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Abstract—The integration of Geographic Information 
Systems (GIS) with Artificial Intelligence (AI) presents 
transformative opportunities for aviation route optimization 
and airspace management. This study proposes a deep 
learning-based framework that combines Convolutional 
Neural Networks (CNN) and Long Short-Term Memory 
(LSTM) networks with GIS spatial data to optimize aircraft 
routing and predict air traffic congestion over Indonesian 
airspace. The proposed system leverages multi-source 
geospatial datasets including terrain elevation models, 
meteorological data, restricted airspace zones, and historical 
flight trajectories to generate dynamically optimized routes. 
Experimental results demonstrate that the AI-GIS 
integrated framework achieves a 23.4% reduction in route 
deviations, a 17.8% improvement in fuel efficiency, and a 
31.2% decrease in conflict detection response time compared 
to conventional air traffic management approaches. The 
system was evaluated using data from Kualanamu 
International Airport (KNO) and surrounding airspace in 
Sumatera, Indonesia. This research contributes to the 
advancement of intelligent aviation systems and provides a 
replicable methodology applicable to regional airspace 
management in developing countries. 
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I. INTRODUCTION 
Aviation is one of the most geographically complex 

transportation domains, requiring the simultaneous 
management of hundreds of flight paths, dynamic weather 
systems, regulatory airspace boundaries, and safety-critical 
conflict resolution. The exponential growth of air traffic in 
Southeast Asia, particularly in the Indonesian archipelago 
with its unique geographical challenges spanning over 
5,000 kilometers, demands increasingly sophisticated tools 
for airspace management and route optimization [1]. 

Geographic Information Systems (GIS) have long been 
recognized as powerful platforms for spatial data 
integration and visualization in aviation contexts [2]. 
However, traditional GIS-based approaches for route 
planning rely on static rule-based algorithms that cannot 
adapt in real time to dynamic airspace conditions such as 
sudden weather changes, temporary flight restrictions, or 

emergency diversions [3]. The advent of Artificial 
Intelligence (AI), particularly deep learning techniques, 
offers a compelling solution to these limitations by 
enabling systems to learn from historical flight data and 
environmental patterns to generate adaptive, optimized 
routing solutions [4]. 

Recent studies have demonstrated the effectiveness of 
machine learning integration with geospatial platforms in 
various transportation domains [5]. In aviation specifically, 
AI-powered trajectory prediction has shown considerable 
accuracy improvements over legacy radar-based methods, 
with particular effectiveness in dense traffic scenarios [6]. 
Despite these advances, the integration of deep learning 
architectures directly with GIS spatial analysis pipelines 
for comprehensive aviation route optimization remains an 
underexplored research area, especially in the context of 
developing nation airspace systems with limited radar 
coverage and heterogeneous data quality [7]. 

This paper presents a novel AI-GIS integrated 
framework specifically designed for aviation route 
optimization and real-time airspace conflict detection in 
Indonesian airspace. The key contributions of this work 
are: (1) a multi-modal deep learning architecture 
combining CNN for spatial pattern recognition with LSTM 
for temporal flight trajectory modeling; (2) a GIS-based 
spatial data fusion pipeline that integrates heterogeneous 
aviation data sources; (3) a real-time conflict prediction 
module evaluated on actual flight data from Kualanamu 
International Airport; and (4) a replicable methodology 
applicable to regional airspace management in archipelago 
nations. 

II. LITERATURE REVIEW 

A. GIS Applications in Aviation 
GIS has been widely applied in aviation for airport site 

selection, obstacle clearance analysis, noise impact 
assessment, and navigation database management. Chen et 
al. [8] demonstrated the use of GIS for 3D airspace volume 
modeling, enabling more precise conflict detection in 
terminal maneuvering areas. Their work emphasized the 
importance of integrating digital terrain models (DTM) 
with instrument flight procedures, a concept that directly 
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informs the spatial foundation of the current study. 
Similarly, Rodriguez and Kim [9] applied GIS-based 
network analysis to optimize departure routes at congested 
hub airports, achieving measurable reductions in ground 
delay, though their approach did not incorporate predictive 
AI components. 

B. Artificial Intelligence in Air Traffic Management 
The application of machine learning to air traffic 

management (ATM) has accelerated significantly over the 
past five years. Pham et al. [10] employed Recurrent 
Neural Networks (RNN) for aircraft trajectory prediction, 
achieving a mean position error below 200 meters over 10-
minute prediction horizons. Graph Neural Networks have 
also been applied to model the relational structure of 
airspace sectors, enabling multi-agent conflict resolution 
algorithms to scale to operationally realistic traffic 
densities [11]. Reinforcement learning approaches have 
shown particular promise for autonomous conflict 
detection and resolution, with agents trained in high-
fidelity simulation environments demonstrating 
performance comparable to human controllers under 
moderate traffic loads [12]. 

C. Deep Learning for Geospatial Analysis 
The fusion of deep learning with geospatial analysis 

has produced significant advances in remote sensing, urban 
planning, and transportation. Convolutional Neural 
Networks applied to aerial imagery have demonstrated the 
ability to extract semantic spatial features relevant to route 
planning, such as terrain classification and obstacle 
identification [13]. Hybrid architectures combining CNN 
for spatial feature extraction with LSTM for temporal 
sequence modeling have been successfully deployed in 
autonomous vehicle navigation [14] and maritime route 
optimization [15], suggesting strong applicability to the 
aviation domain. These foundational works directly 
motivate the CNN-LSTM hybrid architecture proposed in 
this study. 

III. METHODOLOGY 

A. System Architecture Overview 
The proposed AI-GIS integrated framework consists of 

four primary modules: (1) the Geospatial Data Fusion 
Engine, (2) the Deep Learning Prediction Module, (3) the 
Route Optimization Solver, and (4) the Real-Time Conflict 
Detection Interface. These modules interact through a 
standardized spatial data exchange protocol based on OGC 
(Open Geospatial Consortium) standards, ensuring 
interoperability with existing Air Navigation Service 
Provider (ANSP) infrastructure. 

B. Geospatial Data Sources and Preprocessing 
The GIS database was constructed from multiple 

authoritative sources. Digital Elevation Model (DEM) data 
was sourced from the SRTM (Shuttle Radar Topography 
Mission) 30-meter resolution dataset. Airspace boundary 
data was obtained from the Indonesia AIP (Aeronautical 
Information Publication) published by AirNav Indonesia. 

Historical flight trajectory data (ADS-B) was collected 
over a 24-month period (January 2022–December 2023) 
covering 847,623 flight segments within UIR Jakarta FIR 
(Flight Information Region). Meteorological data was 
integrated from BMKG (Badan Meteorologi, Klimatologi, 
dan Geofisika) gridded weather forecasts at 6-hourly 
intervals. 

All spatial datasets were projected to the WGS84/UTM 
Zone 47N coordinate reference system. Data preprocessing 
included outlier removal using Mahalanobis distance 
filtering for ADS-B trajectories, gap-filling of missing 
meteorological values using kriging interpolation, and 
normalization of elevation data to mean sea level (MSL) 
datum. The final fused geospatial dataset comprised 
rasterized spatial layers at 1-kilometer resolution, stacked 
into a multi-channel array suitable for CNN input. 

C. Deep Learning Architecture 
The proposed CNN-LSTM hybrid network processes 

two parallel input streams. The spatial stream takes a 
64×64 multi-channel raster tile centered on the aircraft’s 
current position, with 8 channels representing: terrain 
elevation, slope gradient, restricted zones mask, weather 
severity index, historical traffic density, wind speed, wind 
direction, and visibility. This spatial input is processed 
through 4 convolutional blocks, each consisting of 
Conv2D (3×3 kernels) → BatchNorm → ReLU → 
MaxPool2D layers, producing a 512-dimensional spatial 
feature vector. 

The temporal stream processes a sequence of the past 
30 trajectory waypoints (latitude, longitude, altitude, 
speed, heading) through two stacked LSTM layers with 
256 hidden units and dropout regularization (p=0.3). The 
spatial and temporal feature vectors are concatenated and 
passed through three fully-connected layers to produce 
outputs for: (1) next-waypoint position prediction 
(regression), (2) conflict probability within a 10-nautical 
mile radius (binary classification), and (3) optimal heading 
correction angle (regression). The complete model 
contains approximately 4.7 million trainable parameters 
and was implemented in TensorFlow 2.12. 

D. Route Optimization Solver 
Route optimization was formulated as a constrained 

multi-objective problem minimizing: fuel consumption 
(modeled using the EUROCONTROL BADA aircraft 
performance model), flight time, and cumulative conflict 
risk. The GIS network was represented as a directed graph 
with nodes at waypoints and navigation beacons, and edges 
weighted by the AI model’s predicted cost function. 
Dijkstra’s algorithm with a dynamic cost-update 
mechanism was employed for baseline route computation, 
enhanced by the AI conflict risk predictions to recalculate 
edge weights in real time. 

E. Training and Validation Strategy 
The dataset was partitioned temporally: January 2022–

September 2023 for training (78%), October–November 
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2023 for validation (12%), and December 2023 for held-
out testing (10%). Temporal splitting was chosen over 
random splitting to prevent data leakage from the 
autocorrelated nature of flight trajectories. The model was 
trained for 150 epochs using the Adam optimizer 
(lr=0.001, β1=0.9, β2=0.999) with a cosine annealing 
learning rate schedule. Class imbalance in conflict 
detection (approximately 1:47 positive-to-negative ratio) 
was addressed through focal loss weighting. 

 
Fig. 1. Methodology flowchart 

IV. RESULTS AND DISCUSSION 

A. Trajectory Prediction Performance 
The CNN-LSTM model achieved a mean absolute 

position error (MAPE) of 187.3 meters at a 5-minute 
prediction horizon and 412.6 meters at a 15-minute horizon 
on the test dataset. These results represent a 34.1% 
improvement over the baseline LSTM-only model and a 
51.7% improvement over the persistence model (assuming 
constant velocity), demonstrating the significant 
contribution of the spatial CNN component. The 
incorporation of GIS-derived weather and terrain features 

contributed most significantly to accuracy improvements 
during adverse meteorological conditions, reducing 
prediction error by up to 43% in scenarios with convective 
weather activity above FL150. 

B. Conflict Detection Results 
For the conflict detection task, the model achieved an 

Area Under ROC Curve (AUC-ROC) of 0.943, with 
precision of 0.847 and recall of 0.891 at the operational 
decision threshold. The false positive rate of 3.7% is 
operationally significant; however, comparative analysis 
with ICAO-standard radar conflict alert systems indicates 
this is within acceptable limits for an advisory (non-
mandatory) automation system. Mean time to conflict alert 
was 8.3 minutes prior to predicted loss of separation, 
compared to 4.2 minutes for the current radar-based 
system, providing a 97.6% increase in controller response 
time. 

C. Route Optimization Outcomes 
Route optimization evaluation was conducted on 2,847 

actual flights departing Kualanamu International Airport 
(KNO/WIMM) during the test period. AI-generated routes 
demonstrated a 23.4% reduction in route deviation index 
(RDI) compared to filed flight plans, and a 17.8% average 
reduction in estimated fuel consumption per flight when 
weather-optimized routing was applied. The cumulative 
conflict risk metric was reduced by 41.3% versus baseline 
routing. Fig. 1 illustrates the spatial distribution of 
optimized versus actual routes over the Sumatera sector, 
with the GIS overlay showing the weather avoidance 
regions that motivated the deviations. 

 
Fig. 2. Comparison of AI-optimized routes (blue) versus actual filed 
routes (red) over Sumatera airspace, with GIS overlay of weather 
avoidance zones (yellow polygons) and restricted airspace (grey). 
December 2023 test period sample of 200 flights. 

D. Comparative Analysis 
Table I summarizes the performance comparison 

between the proposed AI-GIS framework and three 
benchmark methods: (1) conventional GIS network 
analysis (static routing), (2) LSTM-only deep learning 
without spatial features, and (3) a commercial ATM 
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decision support system (anonymized). The proposed 
framework outperforms all benchmarks across all 
evaluation metrics, with the most substantial gains 
observed in conflict prediction lead time and weather-
scenario fuel efficiency. 

TABLE I.  PERFORMANCE COMPARISON OF ROUTE 
OPTIMIZATION METHODS 

Metric GIS 
Static 

LSTM 
Only 

Commercial 
ATM 

Proposed 
AI-GIS 

MAPE (5-min, 
m) 

N/A 284.1 251.7 187.3 

Conflict AUC-
ROC 

0.712 0.876 0.921 0.943 

Route Dev. 
Reduction 

8.1% 14.2% 19.7% 23.4% 

Fuel Efficiency 
Gain 

4.3% 9.8% 13.1% 17.8% 

Alert Lead Time 
(min) 

3.1 6.4 7.1 8.3 

a. N/A indicates the method does not include trajectory prediction capability. 

V. CONCLUSION 
This paper has presented an AI-GIS integrated 

framework for aviation route optimization and real-time 
airspace conflict detection, validated on operational data 
from Indonesian airspace. The proposed CNN-LSTM 
hybrid architecture demonstrates that the integration of 
spatially-rich GIS layers with deep learning temporal 
modeling yields significant performance improvements 
over both traditional GIS routing and AI methods lacking 
spatial context. The 23.4% route deviation reduction, 
17.8% fuel efficiency gain, and 8.3-minute conflict alert 
lead time collectively demonstrate the operational viability 
of the proposed system. 

Future work will focus on extending the framework to 
support multi-airport network optimization across the 
entire Jawa–Bali–Sumatera corridor, incorporating real-
time ADS-B data streaming for online model adaptation, 
and evaluating the system’s performance during adverse 
events such as volcanic ash dispersal from active volcanoes 
in Sumatera and Jawa. Explainable AI (XAI) techniques 
will also be investigated to improve controller acceptance 
and trust in automated routing recommendations, a critical 
factor for operational adoption in regulated aviation 
environments. 
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