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Abstract—The integration of Geographic Information
Systems (GIS) with Artificial Intelligence (AI) presents
transformative opportunities for aviation route optimization
and airspace management. This study proposes a deep
learning-based framework that combines Convolutional
Neural Networks (CNN) and Long Short-Term Memory
(LSTM) networks with GIS spatial data to optimize aircraft
routing and predict air traffic congestion over Indonesian
airspace. The proposed system leverages multi-source
geospatial datasets including terrain elevation models,
meteorological data, restricted airspace zones, and historical
flight trajectories to generate dynamically optimized routes.
Experimental results demonstrate that the AI-GIS
integrated framework achieves a 23.4% reduction in route
deviations, a 17.8% improvement in fuel efficiency, and a
31.2% decrease in conflict detection response time compared
to conventional air traffic management approaches. The
system was evaluated using data from Kualanamu
International Airport (KNO) and surrounding airspace in
Sumatera, Indonesia. This research contributes to the
advancement of intelligent aviation systems and provides a
replicable methodology applicable to regional airspace
management in developing countries.
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I. INTRODUCTION

Aviation is one of the most geographically complex
transportation domains, requiring the simultaneous
management of hundreds of flight paths, dynamic weather
systems, regulatory airspace boundaries, and safety-critical
conflict resolution. The exponential growth of air traffic in
Southeast Asia, particularly in the Indonesian archipelago
with its unique geographical challenges spanning over
5,000 kilometers, demands increasingly sophisticated tools
for airspace management and route optimization [1].

Geographic Information Systems (GIS) have long been
recognized as powerful platforms for spatial data
integration and visualization in aviation contexts [2].
However, traditional GIS-based approaches for route
planning rely on static rule-based algorithms that cannot
adapt in real time to dynamic airspace conditions such as
sudden weather changes, temporary flight restrictions, or
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emergency diversions [3]. The advent of Artificial
Intelligence (Al), particularly deep learning techniques,
offers a compelling solution to these limitations by
enabling systems to learn from historical flight data and
environmental patterns to generate adaptive, optimized
routing solutions [4].

Recent studies have demonstrated the effectiveness of
machine learning integration with geospatial platforms in
various transportation domains [5]. In aviation specifically,
Al-powered trajectory prediction has shown considerable
accuracy improvements over legacy radar-based methods,
with particular effectiveness in dense traffic scenarios [6].
Despite these advances, the integration of deep learning
architectures directly with GIS spatial analysis pipelines
for comprehensive aviation route optimization remains an
underexplored research area, especially in the context of
developing nation airspace systems with limited radar
coverage and heterogeneous data quality [7].

This paper presents a novel AI-GIS integrated
framework specifically designed for aviation route
optimization and real-time airspace conflict detection in
Indonesian airspace. The key contributions of this work
are: (1) a multi-modal deep learning architecture
combining CNN for spatial pattern recognition with LSTM
for temporal flight trajectory modeling; (2) a GIS-based
spatial data fusion pipeline that integrates heterogeneous
aviation data sources; (3) a real-time conflict prediction
module evaluated on actual flight data from Kualanamu
International Airport; and (4) a replicable methodology
applicable to regional airspace management in archipelago
nations.

II. LITERATURE REVIEW

A. GIS Applications in Aviation

GIS has been widely applied in aviation for airport site
selection, obstacle clearance analysis, noise impact
assessment, and navigation database management. Chen et
al. [8] demonstrated the use of GIS for 3D airspace volume
modeling, enabling more precise conflict detection in
terminal maneuvering areas. Their work emphasized the
importance of integrating digital terrain models (DTM)
with instrument flight procedures, a concept that directly
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informs the spatial foundation of the current study.
Similarly, Rodriguez and Kim [9] applied GIS-based
network analysis to optimize departure routes at congested
hub airports, achieving measurable reductions in ground
delay, though their approach did not incorporate predictive
Al components.

B. Artificial Intelligence in Air Traffic Management

The application of machine learning to air traffic
management (ATM) has accelerated significantly over the
past five years. Pham et al. [10] employed Recurrent
Neural Networks (RNN) for aircraft trajectory prediction,
achieving a mean position error below 200 meters over 10-
minute prediction horizons. Graph Neural Networks have
also been applied to model the relational structure of
airspace sectors, enabling multi-agent conflict resolution
algorithms to scale to operationally realistic traffic
densities [11]. Reinforcement learning approaches have
shown particular promise for autonomous conflict
detection and resolution, with agents trained in high-
fidelity  simulation  environments  demonstrating
performance comparable to human controllers under
moderate traffic loads [12].

C. Deep Learning for Geospatial Analysis

The fusion of deep learning with geospatial analysis
has produced significant advances in remote sensing, urban
planning, and transportation. Convolutional Neural
Networks applied to aerial imagery have demonstrated the
ability to extract semantic spatial features relevant to route
planning, such as terrain classification and obstacle
identification [13]. Hybrid architectures combining CNN
for spatial feature extraction with LSTM for temporal
sequence modeling have been successfully deployed in
autonomous vehicle navigation [14] and maritime route
optimization [15], suggesting strong applicability to the
aviation domain. These foundational works directly
motivate the CNN-LSTM hybrid architecture proposed in
this study.

III. METHODOLOGY

A. System Architecture Overview

The proposed AI-GIS integrated framework consists of
four primary modules: (1) the Geospatial Data Fusion
Engine, (2) the Deep Learning Prediction Module, (3) the
Route Optimization Solver, and (4) the Real-Time Conflict
Detection Interface. These modules interact through a
standardized spatial data exchange protocol based on OGC
(Open Geospatial Consortium) standards, ensuring
interoperability with existing Air Navigation Service
Provider (ANSP) infrastructure.

B. Geospatial Data Sources and Preprocessing

The GIS database was constructed from multiple
authoritative sources. Digital Elevation Model (DEM) data
was sourced from the SRTM (Shuttle Radar Topography
Mission) 30-meter resolution dataset. Airspace boundary
data was obtained from the Indonesia AIP (Aeronautical
Information Publication) published by AirNav Indonesia.
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Historical flight trajectory data (ADS-B) was collected
over a 24-month period (January 2022-December 2023)
covering 847,623 flight segments within UIR Jakarta FIR
(Flight Information Region). Meteorological data was
integrated from BMKG (Badan Meteorologi, Klimatologi,
dan Geofisika) gridded weather forecasts at 6-hourly
intervals.

All spatial datasets were projected to the WGS84/UTM
Zone 47N coordinate reference system. Data preprocessing
included outlier removal using Mahalanobis distance
filtering for ADS-B trajectories, gap-filling of missing
meteorological values using kriging interpolation, and
normalization of elevation data to mean sea level (MSL)
datum. The final fused geospatial dataset comprised
rasterized spatial layers at 1-kilometer resolution, stacked
into a multi-channel array suitable for CNN input.

C. Deep Learning Architecture

The proposed CNN-LSTM hybrid network processes
two parallel input streams. The spatial stream takes a
64x64 multi-channel raster tile centered on the aircraft’s
current position, with 8 channels representing: terrain
elevation, slope gradient, restricted zones mask, weather
severity index, historical traffic density, wind speed, wind
direction, and visibility. This spatial input is processed
through 4 convolutional blocks, each consisting of
Conv2D (3x3 kernels) — BatchNorm — ReLU —
MaxPool2D layers, producing a 512-dimensional spatial
feature vector.

The temporal stream processes a sequence of the past
30 trajectory waypoints (latitude, longitude, altitude,
speed, heading) through two stacked LSTM layers with
256 hidden units and dropout regularization (p=0.3). The
spatial and temporal feature vectors are concatenated and
passed through three fully-connected layers to produce
outputs for: (1) next-waypoint position prediction
(regression), (2) conflict probability within a 10-nautical
mile radius (binary classification), and (3) optimal heading
correction angle (regression). The complete model
contains approximately 4.7 million trainable parameters
and was implemented in TensorFlow 2.12.

D. Route Optimization Solver

Route optimization was formulated as a constrained
multi-objective problem minimizing: fuel consumption
(modeled using the EUROCONTROL BADA aircraft
performance model), flight time, and cumulative conflict
risk. The GIS network was represented as a directed graph
with nodes at waypoints and navigation beacons, and edges
weighted by the AI model’s predicted cost function.
Dijkstra’s algorithm with a dynamic cost-update
mechanism was employed for baseline route computation,
enhanced by the Al conflict risk predictions to recalculate
edge weights in real time.

E. Training and Validation Strategy

The dataset was partitioned temporally: January 2022—
September 2023 for training (78%), October—-November
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2023 for validation (12%), and December 2023 for held-
out testing (10%). Temporal splitting was chosen over
random splitting to prevent data leakage from the
autocorrelated nature of flight trajectories. The model was
trained for 150 epochs using the Adam optimizer
(Ir=0.001, B1=0.9, B2=0.999) with a cosine annealing
learning rate schedule. Class imbalance in conflict
detection (approximately 1:47 positive-to-negative ratio)
was addressed through focal loss weighting.
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Fig. 1. Methodology flowchart

IV. RESULTS AND DISCUSSION

A. Trajectory Prediction Performance

The CNN-LSTM model achieved a mean absolute
position error (MAPE) of 187.3 meters at a 5-minute
prediction horizon and 412.6 meters at a 1 5-minute horizon
on the test dataset. These results represent a 34.1%
improvement over the baseline LSTM-only model and a
51.7% improvement over the persistence model (assuming
constant  velocity), demonstrating the significant
contribution of the spatial CNN component. The
incorporation of GIS-derived weather and terrain features
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contributed most significantly to accuracy improvements
during adverse meteorological conditions, reducing
prediction error by up to 43% in scenarios with convective
weather activity above FL150.

B. Conflict Detection Results

For the conflict detection task, the model achieved an
Area Under ROC Curve (AUC-ROC) of 0.943, with
precision of 0.847 and recall of 0.891 at the operational
decision threshold. The false positive rate of 3.7% is
operationally significant; however, comparative analysis
with ICAO-standard radar conflict alert systems indicates
this is within acceptable limits for an advisory (non-
mandatory) automation system. Mean time to conflict alert
was 8.3 minutes prior to predicted loss of separation,
compared to 4.2 minutes for the current radar-based
system, providing a 97.6% increase in controller response
time.

C. Route Optimization Outcomes

Route optimization evaluation was conducted on 2,847
actual flights departing Kualanamu International Airport
(KNO/WIMM) during the test period. Al-generated routes
demonstrated a 23.4% reduction in route deviation index
(RDI) compared to filed flight plans, and a 17.8% average
reduction in estimated fuel consumption per flight when
weather-optimized routing was applied. The cumulative
conflict risk metric was reduced by 41.3% versus baseline
routing. Fig. 1 illustrates the spatial distribution of
optimized versus actual routes over the Sumatera sector,
with the GIS overlay showing the weather avoidance
regions that motivated the deviations.

Fig. 2. Comparison of Al-optimized routes (blue) versus actual filed
routes (red) over Sumatera airspace, with GIS overlay of weather
avoidance zones (yellow polygons) and restricted airspace (grey).
December 2023 test period sample of 200 flights.

D. Comparative Analysis

Table 1 summarizes the performance comparison
between the proposed AI-GIS framework and three
benchmark methods: (1) conventional GIS network
analysis (static routing), (2) LSTM-only deep learning
without spatial features, and (3) a commercial ATM
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decision support system (anonymized). The proposed
framework outperforms all benchmarks across all
evaluation metrics, with the most substantial gains
observed in conflict prediction lead time and weather-
scenario fuel efficiency.

TABLE 1. PERFORMANCE COMPARISON OF ROUTE
OPTIMIZATION METHODS
Metric GIS LSTM | Commercial | Proposed
Static Only ATM AI-GIS

MAPE (5-min, N/A 284.1 251.7 187.3
m)
Conflict AUC- 0.712 0.876 0.921 0.943
ROC
Route Dev. 8.1% 14.2% 19.7% 23.4%
Reduction
Fuel Efficiency 4.3% 9.8% 13.1% 17.8%
Gain
Alert Lead Time 3.1 6.4 7.1 8.3
(min)

a. N/A indicates the method does not include trajectory prediction capability.

V. CONCLUSION

This paper has presented an AI-GIS integrated
framework for aviation route optimization and real-time
airspace conflict detection, validated on operational data
from Indonesian airspace. The proposed CNN-LSTM
hybrid architecture demonstrates that the integration of
spatially-rich GIS layers with deep learning temporal
modeling yields significant performance improvements
over both traditional GIS routing and Al methods lacking
spatial context. The 23.4% route deviation reduction,
17.8% fuel efficiency gain, and 8.3-minute conflict alert
lead time collectively demonstrate the operational viability
of the proposed system.

Future work will focus on extending the framework to
support multi-airport network optimization across the
entire Jawa—Bali—-Sumatera corridor, incorporating real-
time ADS-B data streaming for online model adaptation,
and evaluating the system’s performance during adverse
events such as volcanic ash dispersal from active volcanoes
in Sumatera and Jawa. Explainable Al (XAI) techniques
will also be investigated to improve controller acceptance
and trust in automated routing recommendations, a critical
factor for operational adoption in regulated aviation
environments.
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