Green Polymer Composites for Aerospace Engineering Applications : A Review
Keywords:
composite, natural fiber, polymer, green, aerospace.Abstract
In the last decade, Study on the use of natural fibers as synthetic substitute materials or green polymer composites is growing. The growth of green polymer composites has had a significant impact on polymer composite research and innovation. This rapid growth provides advantages over low-cost synthetic fiber composites and reduces adverse impacts on the environment. Because of its potential, this material is applied in various engineering fields, including in the aerospace engineering. In recent years, various improvements have been made to natural fiber composite materials to improve physical, mechanical and chemical properties. The aim of this review is to highlight trends in the use of natural fiber polymer composites applied to the aerospace engineering. This review article explains the latest research activities regarding green polymer composite fabrication, advantages of green polymer composites, and applications in the aerospace engineering.
References
[1] Al-Oqla, F.M. and Salit, M.S., 2. Materials Selection for Natural Fiber Composites, Materials Selection for Natural Fiber Composites. Elsevier Inc.
[2] Thyavihalli Girijappa, Y.G., Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S.,. Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Front. Mater. 2019. 6, 226.
[3] Tsai WH, Chang YC, Lin SJ, Chen HC, Chu PY. A green approach to the weight reduction of aircraft cabins. J Air Transp Manag 2014;40(0):65-77.
[4] Amjad, A., Anjang, A., & Abidin, M. S. Z. (2022). Effect of nanofiller concentration on the density and void content of natural fiber-reinforced epoxy composites. Biomass Conversion and Biorefinery, 1-10.
[5] Al Amin, M. M. R., Asrofi, M., Pradiza, R. R., Setyawan, H., Kristianta, F. X., Junus, S., & Ilyas, R. A. (2023). Edible Film Biocomposite based on Cassava Starch/Soy Lecithin Reinforced by Sugarcane Bagasse Fiber: Mechanical, Morphological and Moisture Properties. In BIO Web of Conferences (Vol. 69, p. 03019). EDP Sciences.
[6] Kabir, M.M., Wang, H., Lau, K.T., Cardona, F., 2012. Chemical treatments on plantbased natural fibre reinforced polymer composites: an overview. Compos. B Eng. 43, 2883-2892.
[7] Wallenberger, F. T., & Bingham, P. A. (2010). Fiberglass and glass technology. Energy-Friendly Compositions And Applications.
[8] Vijaya Ramnath, B., Manickavasagam, V.M., Elanchezhian, C., Vinodh Krishna, C., Karthik, S., Saravanan, K., 2014. Determination of mechanical properties of intra-layer abacaejuteeglass fiber reinforced composite. Mater. Des. 60, 643-652.
[9] Sanjay, M.R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., Pradeep, S., 2018. Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566-581..
[10] Nirmal, U., Hashim, J., Low, K.O., 2012. Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol. Int. 47, 122-133.
[11] El-Sabbagh, A., Steuernagel, L., Ring, J., Toepfer, O., 2016. Development of Natural Fiber/engineering Plastics Composites with Flame Retardance Properties, 03-20.
[12] Bisaria, H., Gupta, M.K., Shandilya, P., Srivastava, R.K., 2015. Effect of fibre length on mechanical properties of randomly oriented short jute fibre reinforced epoxy composite. Mater. Today: Proceedings 2, 1193-1199.
[13] Balakrishnan, P., John, M. J., Pothen, L., Sreekala, M. S., & Thomas, S. (2016). Natural fibre and polymer matrix composites and their applications in aerospace engineering. In Advanced composite materials for aerospace engineering (pp. 365-383). Woodhead Publishing.
[14] Otto, G.P., Moises, M.P., Carvalho, G., Rinaldi, A.W., Garcia, J.C., Radovanovic, E., Favaro, S.L., 2017. Mechanical properties of a polyurethane hybrid composite with natural lignocellulosic fibers. Compos. B Eng. 110, 459-465.
[15] Jawaid, M., Alothman, O.Y., Paridah, M.T., Khalil, H.P.S.A., 2014. Effect of oil palm and jute fiber treatment on mechanical performance of epoxy hybrid composites. Int.J. Polym. Anal. Char. 19, 62-69.
[16] Senthil Kumar, K., Siva, I., Rajini, N., Winowlin Jappes, J.T., Amico, S.C., 2016. Layering pattern effects on vibrational behavior of coconut sheath/banana fiber hybrid composites. Mater. Des. 90, 795-803.
[17] Venkatesh, R.P., Ramanathan, K., Krishnan, S.R., 2015. Study on physical and mechanical properties of NFRP hybrid composites. Indian J. Pure Appl. Phys. 53, 175-180.
[18] Alavudeen, A., Rajini, N., Karthikeyan, S., Thiruchitrambalam, M., Venkateshwaren, N., 2015. Mechanical properties of banana/kenaf fiber reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater.Des. 66, 246-257.
[19] Saw, S.K., Sarkhel, G., Choudhury, A., 2012. Preparation and characterization of chemically modified Jute-Coir hybrid fiber reinforced epoxy novolac composites. J. Appl. Polym. Sci. 125, 3038-3049.
[20] Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B Eng. 42, 856-873.
[21] Bains, P.S., Sidhu, S.S., Payal, H.S., 2016. Fabrication and Machining of Metal Matrix Composites: A Review. Materials and Manufacturing Processes.
[22] Meenakshi, C. M., & Krishnamoorthy, A. (2018). Preparation and mechanical characterization of flax and glass fiber reinforced polyester hybrid composite laminate by hand lay-up method. Materials Today: Proceedings, 5(13), 26934-26940.
[23] Kikuchi, T., Koyanagi, T., Hamada, H., Nakai, A., Takai, Y., Goto, A., Koshino, T. 2012. Biomechanics investigation of skillful technician in hand lay up fabrication method. In ASME International Mechanical Engineering Congress and Exposition (Vol. 45196, pp. 533-539). American Society of Mechanical Engineers.
[24] Ha, S., Choi, Y., Lee, W., Kim, Y., & Yoon, S. H. (2021). Prediction of mechanical properties of graphite nanoflake/polydimethylsiloxane nanocomposites as affected by processing method. Composites Part B: Engineering, 224, 109186.
[25] Kong, C., Park, H., & Lee, J. (2014). Study on structural design and analysis of flax natural fiber composite tank manufactured by vacuum assisted resin transfer molding. Materials Letters, 130, 21-25.
[26] Gu, Y., Tan, X., Yang, Z., Li, M., Zhang, Z., 2014. Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Mater. Des. 56, 852e861. https://doi.org/10.101j.matdes.2013.11.077, 1980-2015.
[27] Saba, N., Paridah, M.T., Abdan, K., Ibrahim, N.A., 2016. Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construct. Build. Mater. 123, 15-26.
[28] Yan, L., Chouw, N., Yuan, X., 2012. Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J. Reinforc. Plast. Compos. 31, 425-437.
[29] Sreekumar, P.A., Joseph, K., Unnikrishnan, G., Thomas, S., 2007. A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos. Sci.Technol. 67, 453-461.
[30] Arockiam, N. J., Jawaid, M., & Saba, N. (2018). Sustainable bio composites for aircraft components. In Sustainable composites for aerospace applications (pp. 109-123). Woodhead Publishing.
[31] Biswas, S., Kindo, S., Patnaik, A., 2011. Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers Polym. 12, 73-78.
[32] De Rosa, I.M., Santulli, C., Sarasini, F., 2010. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater. Des. 31, 2397-2405.
[33] Hu, R., Lim, J.-K., 2007. Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J. Compos. Mater. 41, 1655-1669.
[34] Ochi, S., 2008. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater. 40, 446-452.
[35] Obataya, E., Minato, K., Tomita, B., 2001. Influence of moisture content on the vibrational properties of hematoxylin-impregnated wood. J. Wood Sci. 47, 317-321.
[36] Obataya, E., Norimoto, M., Gril, J., 1998. The effects of adsorbed water on dynamic mechanical properties of wood. Polymer 39, 3059-3064.
[37] Prabhakaran, S., Krishnaraj, V., Kumar, M.S., Zitoune, R., 2014. Sound and vibration damping properties of flax fiber reinforced composites. Procedia Engineering 97, 573-581.
[38] Senthil Kumar, K., Siva, I., Jeyaraj, P., Winowlin Jappes, J.T., Amico, S.C., Rajini, N., 2014. Synergy of fiber length and content on free vibration and damping behavior of natural fiber reinforced polyester composite beams. Mater. Des. 56, 379-386.
[39] Rajesh, M., Pitchaimani, J., 2016. Dynamic mechanical analysis and free vibration behavior of intra-ply woven natural fiber hybrid polymer composite. J. Reinforc. Plast. Compos. 35, 228-242.
[40] Athijayamani, A., Thiruchitrambalam, M., Natarajan, U., & Pazhanivel, B. (2009). Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Materials Science and Engineering: A, 517(1-2), 344-353.
[41] Ahmed, S., Ahsan, A., & Hasan, M. (2017). Physico-mechanical properties of coir and jute fibre reinforced hybrid polyethylene composites. International Journal of Automotive & Mechanical Engineering, 14(1).
[42] Haris, M. Y., Laila, D., Zainudin, E. S., Mustapha, F., Zahari, R., & Halim, Z. (2011). Preliminary review of biocomposites materials for aircraft radome application. Key engineering materials, 471, 563-567.
[43] Irawan, A. P., Soemardi, T. P., Widjajalaksmi, K., & Reksoprodjo, A. H. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. International Journal of Mechanical and Materials Engineering, 6(1), 46-50.
[44] Samal, S.K., Mohanty, S., Nayak, S.K., 2009. Banana/glass fiber-reinforced polypropylene hybrid composites: fabrication and performance evaluation. Polym. Plast. Technol. Eng. 48, 397-414.
[45] Huang, J.K., Young, W. Bin, 2019. The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Compos. B Eng. 166, 272-283.
[46] Nisini, E., Santulli, C., Liverani, A., 2017. Mechanical and impact characterization of hybrid composite laminates with carbon, basalt and flax fibres. Compos. B Eng. 127, 92-99.
[47] Jacob John M, Anandjiwala R, Wambua P, Chapple SA, Klems T, Doecker M, editors. Bio-based structural composite materials for aerospace applications. South African International Aerospace Symposium; 2008.
[48] Alonso-Martin, P. P., Gonzalez-Garcia, A., Lapena-Rey, N., Fita-Bravo, S., Martinez-Sanz, V., & Marti-Ferrer, F. (2012). Green aircraft interior panels and method of fabrication. European Patent EP2463083A2, 13.
[49] Subash T, Nadaraja Pillai S. Bast fibers reinforced green composites for aircraft indoor structures applications: review. J Chem Pharmaceut Sci 2015; ISSN: 0974-2115:305307.
[50] Boegler O, Kling U, Empl D, Isikveren A. Potential of Sustainable Materials in Wing Structural Design: Deutsche Gesellschaft fu¨r Luft-und Raumfahrt-Lilienthal-Oberth eV; 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Revvan Rifada Pradiza, Mochamad Asrofi, Haris Setyawan, Muhammad Oktaviano Putra Hastu, M. Saddam Arrozaq (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.